

Journal of Nutritional Biochemistry 12 (2001) 304-309

Blood plasma response and urinary excretion of nitrite and nitrate in milk-fed calves after oral nitrite and nitrate administration

Bruno R. Hüsler^a, Jürg W. Blum*

Division of Nutritional Pathology, Faculty of Veterinary Medicine, University of Berne, Berne, Switzerland

Received 31 August 2000; received in revised form 12 January 2001; accepted 22 January 2001

Abstract

There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 μ mol nitrate or nitrite/kg^{0.75} or 100 μ mol nitrite *plus* 100 μ mol nitrate/kg^{0.75} with milk for 3 d. In experiment 2, calves were fed 400 μ mol nitrate or nitrite/kg^{0.75} with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite *plus* nitrate. The rise of plasma nitrate was greater if 400 than 200 μ mol nitrate or nitrite/kg^{0.75} were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 μ mol nitrate or nitrite *plus* nitrate were administered and excreted amounts were greater if 400 than 200 μ mol nitrate or nitrite/kg^{0.75} were fed. After nitrite ingestion plasma nitrate were administered and excreted amounts were greater if 400 than 200 μ mol nitrate or nitrite/kg^{0.75} were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Nitrite; Nitrate; Calf

1. Introduction

Nitrate (NO_3^-) and nitrite (NO_2^-) can be ingested with food and water [1]. Furthermore, NO_3^- and NO_2^- can be endogenously synthesized from nitric oxide (NO), whereby the endogenous production of NO can be stimulated by three NO synthases (NOS) [2–6]. Inducible NOS (iNOS) is

* Corresponding author. Tel.: +41-31-6312324; fax: +41-31-6312640.

E-mail address: blum@itz.unibe.ch (J.W. Blum).

The data have been in part presented and published in abstract form at the Joint Meeting of the American Dairy Science Association and American Society of Animal Science, Denver, CO, USA, July 1998, p. 132 (abstract 509).

Part of a thesis of B.R.H. for Dr. med. vet., accepted 1999 by the Veterinary Faculty, University of Berne, Switzerland.

Present address: 5043 Holziken, Switzerland.

expressed in cells like monocytes and Kupffer cells of the liver. Thus, iNOS production is well known to be enhanced and followed by increased NO_3^- formation in various types of infections or after the administration of endotoxin and cytokines [7]. This is also the case for cattle [8–10], as reviewed by Jungi [11] and Elsasser et al. [12]. In addition, two of the enzymes (endothelial and neuronal NOS) are continuously expressed, are termed constitutive NOS, and are responsible for the production of relatively stable amounts of NO, NO_2^- and NO_3^- . Furthermore, there is NOS-independent NO production [13–15].

In blood plasma particularly high NO₃⁻ concentrations were measured in healthy (premature) calves born 2 wk before the normal term (mean: 470 μ mol/L; range: 230– 830 μ mol/L) and in neonatal calves before their first meal (mean: 830 μ mol/L; range 290–1050 μ mol/L), somewhat lower concentrations in 1 to 4 months old milk-fed calves (mean: 50 μ mol/L; range: 30–70 μ mol/L), whereas plasma concentrations in heifers were very low (3–5 μ mol/L) and in dairy cows were below the detection limit [8,10,16; Blum, unpublished observations]. Thus, plasma levels in

This study was in part supported by H. W. Schaumann-Stiftung, Hamburg, Germany. The excellent laboratory work of C. Morel and Y. Zbinden, Div. of Nutrition Pathology, Univ. of Berne, Berne, Switzerland is greatly acknowledged.

^{0955-2863/01/\$ –} see front matter © 2001 Elsevier Science Inc. All rights reserved. PII: \$0955-2863(01)00143-7

premature, neonatal and veal calves were about 50-, 90- and 6-fold higher, respectively, than the maximal NO_3^- concentrations measured (9 μ mol/L) when endotoxin challenges were combined with arginine infusions in heifers to enhance NO formation [8]. In neonatal and veal calves the high plasma levels were paralleled by corresponding urinary and salivary NO₃⁻ excretion, although animals were strictly fed milk which did not contain measurable amounts of NO_3^- or NO_2^- . These data indicated that NO_3^- in premature, neonatal and young calves was endogenously produced and that the high circulating amounts of NO_3^- were primarily of constitutive nature [16; Blum, unpublished observations]. The question remained, however, what amounts of exogenous (orally administered) NO_3^- and NO_2^- are needed to influence the NO_2^- or NO_3^- status in milk-fed calves. Effects of ingested NO_2^- or NO_3^- on the NO_2^- and NO_3^- status were expected to be much greater in milk-fed calves than in cattle with functioning forestomachs, in which microbes metabolize NO_3^- primarily to NO_2^- [1] and to hydroxylamine and ammonia. Although blood plasma NO₃⁻ concentrations closely correlate with NO_3^- ingestion in mature ruminants [17], it is the absorbed NO_2^- which is of major concern because it is about 10 times more toxic than NO_3^- [1]. In milk-fed pre-ruminant calves, in which the foregut development and digestive function is depressed, almost only NO_3^- and practically no NO_2^- was measurable in blood plasma, saliva and urine, suggesting that NO_2^- is rapidly converted to NO_3^{-} [16]. Based on these premisses we have studied changes in blood plasma concentration and urinary excretion of NO₂⁻ and NO₃⁻ after oral administration of NO_3^- and NO_2^- in milk-fed calves. The goal was to study the sensitivity of changes in blood plasma and urine to small amounts of exogenous NO_2^- and NO_3^- and whether the NO_2^- and NO_3^- status can be modified by ingested NO_2^- and NO_3^- in preruminant calves. This is of importance because young calves, as young animals of other species, are well known to be particularly susceptible to NO_2^- and $NO_3^$ intoxications [1].

2. Materials and methods

2.1. Animals, management and feeds

Experimental protocols were approved by the Committee for the Permission of Animal Experiments of the Canton of Freiburg, Granges-Paccot, Switzerland.

Six male veal calves (Simmental \times Red Holstein) were studied in experiment 1 and another 12 male calves in experiment 2. They were bought at the age of 5 to 6 wk and housed at the Research Station in Posieux, Switzerland. Calves were weighed weekly and examined daily with respect to health status. They were kept in loose housing systems on straw litter and fed whole milk twice daily (at 0800 and 1600) in amounts of 100–150 g/kg body weight (BW). The experiments started at the age of 8 wk, i.e., when calves reached a BW of 80 ± 2 kg. At 1 d before the start of experiments calves were moved into boxes which allowed optimal feeding, blood sampling and urine collection. Ambient temperature during experiments was between 12– 16°C.

Whole milk was from the milk pool of 60-70 cows of the research station and its NO_3^- and NO_2^- concentrations were below the detection level.

2.2. Drugs

The NO_3^- and NO_2^- were purchased as sodium salts from Fluka Chemie AG, Buchs, Switzerland.

2.3. Experimental procedures

2.3a. Experiment 1. Calves were administered once daily for 3 d (on d 1, 2, and 3) either no NO_2^- or NO_3^- (control group, Gr0), 200 µmol $NO_3^-/kg^{0.75}$ BW (group GrNO₃), 200 µmol $NO_2^-/kg^{0.75}$ BW (group GrNO₂), or 100 µmol NO_3^- plus 100 µmol $NO_2^-/kg^{0.75}$ BW (group GrNO₂NO₃). For this purpose NO_2^- and/or NO_3^- were added to whole milk of the morning meal. During the ensuing 4 d they received no NO_3^- or NO_2^- to study respective clearance rates from blood plasma. The experiment was designed as crossover:

Calves	Control Period	NO_3^-	NO_2^-	$NO_2^- + NO_3^-$
1, 2	wk 1	wk 2	wk 3	wk 4
3, 4	wk 1	wk 3	wk 4	wk 2
5,6	wk 1	wk 4	wk 2	wk 3

Blood samples were taken from jugular veins with evacuated tubes containing anticoagulants (1.8 g dipotassium-EDTA/L blood). On d 1 blood samples were obtained before and at 2, 4 and 6 h after the morning meal (together with NO₂⁻ and/or NO₃⁻ administrations), on days 2 and 3 samples were taken 6 h after the morning meal (combined with NO₂⁻ and/or NO₃⁻ administrations), and on d 4 preprandially and 6 h postprandially. Tubes were cooled on ice until centrifuged at 1000 × g for 20 min at 4°C. Supernatants (plasma) were frozen at -20° C for later analyses.

Urine was sampled using an urinal, formed of elastic silicone (Rhodorsil RTV 585, Aseol AG, Berne, Switzerland) and fixed on the calf around the abdomen at 1 d before the experiments started. Urine was collected in bottles which were cooled on ice. Eight fractions were collected. Fraction 1: on d 1 from 0800 to 1400; fraction 2: on d 1 from 1400 to d 2 at 0800; fraction 3: on d 2 from 0800 to 1400; fraction 4: on d 2 from 1400 to d 3 at 0800; fraction 5: on d 3 from 0800 to 1400; fraction 6: on d 3 from 1400 to d 4 at 0800; fraction 7: on d 4 from 0800 to 1400; fraction 8: on d 4 from 1400 to d 5 at 0800. After measuring the volume of the fractions the samples were partitioned into aliquots and stored at -20° C until analyzed.

Table 1

Plasma NO_3^- and NO_2^- concentrations in the control group (GrO), and after oral administration on d 1, d 2 and d 3 of 200 μ mol $NO_3^-/kg^{0.75}$ (group GrNO₃), 200 μ mol $NO_2^-/kg^{0.75}$ (group GrNO₃) or 100 μ mol NO_2^- plus 100 μ mol $NO_3^-/kg^{0.75}$ (group GrNO₃) with the morning meal (at 0800)

Trait	Group	Day 1 preprandial	2 h postprandial	4 h postprandial	6 h postprandial	Day 2 6 h postprandial	Day 3 6 h postprandial	Day 4 preprandial	preprandial
(µmol/	L)								
NO_3^-	GrO	42 ± 8^{AB}	41 ± 8^{C}	41 ± 8^{B}	$45 \pm 7^{\mathrm{B}}$	$36 \pm 5^{\mathrm{B}}$	32 ± 5^{B}	31 ± 5^{B}	$30 \pm 4^{\text{B}}$
	GrNO ₃	$23 \pm 2^{\mathrm{B}}$	814* ^B	$114 \pm 6^{*A}$	$124 \pm 7^{*A}$	$158 \pm 8^{*A}$	$179 \pm 10^{*A}$	$114 \pm 14^{\text{A}}$	61 ± 13^{A}
	GrNO ₂	$51 \pm 13^{\text{A}}$	$117 \pm 13^{*A}$	$126 \pm 13^{*A}$	$130 \pm 15^{*A}$	$152 \pm 14^{*A}$	$164 \pm 17^{*A}$	$103 \pm 17^{\text{A}}$	57 ± 14^{AB}
	GrNO ₂ NO ₃	29 ± 3^{AB}	$94 \pm 3^{*AB}$	$122 \pm 4^{*A}$	$126 \pm 3^{*A}$	$155 \pm 5^{*A}$	$176 \pm 4^{*A}$	115 ± 6^{A}	67 ± 5^{A}
NO_2^-	GrO	5.4 ± 2.4	4.4 ± 0.9^{B}	$5.4 \pm 1.5^{\mathrm{AB}}$	$2.2 \pm 0.3^{\mathrm{B}}$	4.0 ± 1.0	4.6 ± 1.3	3.2 ± 0.5	2.7 ± 0.3
2	GrNO ₃	5.4 ± 1.2	2.7 ± 0.6^{B}	3.4 ± 0.7^{B}	$3.8\pm0.7^{\mathrm{AB}}$	4.0 ± 0.7	3.6 ± 0.8	4.4 ± 1.3	2.2 ± 0.2
	GrNO ₂	2.3 ± 0.4	$7.8 \pm 1.9^{*A}$	$7.1 \pm 0.8^{*A}$	$5.5 \pm 1.3^{*A}$	3.2 ± 0.7	$6.0 \pm 1.2^{*}$	4.6 ± 1.7	4.7 ± 1.5
	GrNO ₂ NO ₃	3.5 ± 1.0	5.0 ± 1.1^{AB}	$3.2 \pm 0.9^{\mathrm{B}}$	$5.4\pm0.9^{\rm AB}$	3.4 ± 0.7	4.0 ± 5.3	3.6 ± 1.1	4.3 ± 0.8

^{ABC} Values are means \pm SEM, n = 6 calves per group. Means with different capital superscript letters (A, B, C) are significantly different (P < 0.05) between groups. * Means are significantly different (P < 0.05) from preprandial values on d 1, d 2, and d 3 within groups.

2.3b. Experiment 2. Six calves received 400 μ mol NO₂^{-/} kg^{0.75} BW (GrHNO₂) and the other six calves were administered 400 μ mol NO₃^{-/}/kg^{0.75} BW (GrHNO₃) with the morning meal at 0800.

Blood samples were taken before (at 0800) and at 2, 4, 6, 8, and 24 h after NO_2^- or NO_3^- administrations. Procedures of blood sampling were as in experiment 1.

Urine samples were collected in bottles, which were cooled on ice, in 3 fractions. Collection of fraction 1 started at 1400 on the d before the experiment and lasted up to 0800 (time of NO_2^- or NO_3^- administrations) on the experimental day; fraction 2 was collected from 0800 (time of NO_2^- or NO_3^- administrations) to 1400; and fraction 3 was collected from 1400 up to 0800 on the next day (i.e., 24 h after NO_2^- or NO_3^- administrations). After the volume of the fractions was measured aliquots were frozen at -20° C until analyzed.

2.3c. Experiment 3. NO_2^- was dissolved in amounts to reach final concentrations of up to about 50 μ mol/L of whole blood. Blood was obtained from a veal calf and stored at 18°C for 24 h. The NO_2^- and NO_3^- concentrations were measured before (control) and immediately after the NO_2^- addition to blood and at 2, 4, 6, and 24 h afterwards to study the stability of NO_2^- in vitro.

2.4. Laboratory analyses

Plasma NO₂⁻ and NO₃⁻ concentrations were measured as described by Kahl et al. [8] and Blum et al. [20]. In milk prior to determination of NO₂⁻ or NO₃⁻ the samples were centrifuged twice at 10,000 × g at 4°C for 15 min, followed by removal of the whey fraction between the supernatant (fat layer) and the infranatant (precipitates) and storage at -20° C until assayed. This excluded inhibitory matrix effects on biochemical reactions of the assays [10]. The NO₃⁻ was converted by added NO₃⁻ reductase to NO₂⁻, which was then measured by the Griess reaction. The NO₂⁻ was measured in the absence of NO₃⁻ reductase. Standards ranged from 3.25 to 100 μ mol/L. The sensitivity of the assay was $\leq 3.25 \ \mu$ mol/L. Recovery of added NO₂⁻ and NO₃⁻ to blood plasma or whey was between 97 and 102%, respectively. Coefficients of variation within and between assays were ≤ 2 and $\leq 3\%$, respectively.

2.5. Statistical analyses

Values of NO_3^- and NO_2^- in blood plasma and of urinary excretion of NO_3^- and NO_2^- (evaluated from concentrations of NO_3^- and NO_2^- in urine and the quantity of fractions) are expressed as means \pm SEM.

Time and treatment differences of pre- and postprandial values in plasma and urine were evaluated by mixed procedures using the repeated measure analysis [18]. The model used was $Y_{ijkl} = \mu + \text{group}_i + \text{time}_j + \text{animal}_k + e_{ijkl}$, where $Y_{ijkl} = \text{measured value}$, $\mu = \text{general mean}$, group_i = effects of different NO₂⁻, or NO₃⁻, or NO₂⁻ + NO₃⁻ administration, time_j = effect of time within group, animal_k = effects of calves within group, and $e_{ijkl} = \text{residual}$ error. Effects were significant if P < 0.05.

The half-life of NO_3^- in blood plasma after the last administration of NO_2^- , NO_3^- , and NO_2^- plus NO_3^- was determined according to Wartak [19].

3. Results

3.1. Experiment 1

Plasma NO₂⁻ and NO₃⁻ concentrations in calves administered 200 μ mol NO₂⁻, NO₃⁻, or NO₂⁻ plus NO₃⁻/kg^{0.75} for 3 d (Table 1). Preprandial NO₃⁻ concentrations on d 1 in GrNO₂ were slightly higher (P < 0.05) than in GrNO₃⁻. In GrO the NO₃⁻ concentrations did not change significantly during the whole experimental period. However, NO₃⁻ concentrations increased (P < 0.001) after feeding on d 1 Table 2

Urinary excretion of NO₃⁻ and NO₂⁻ in control group (GrO), and after oral administration on d 1, d 2 and d 3 of 200 μ mol NO₃⁻/kg^{0.75} (group GrNO₃), 200 μ mol NO₂⁻/kg_{0.75} (group GrNO₂) or 100 μ mol NO₂⁻ plus 100 μ mol NO₃⁻/kg^{0.75} (group GrNO₃) with the morning meal (at 0800)

Trait	Group	Fraction 1 Day 1 0800–1400	Fraction 2 Day 1 1400– Day 2 0800	Fraction 3 Day 2 0800–1400	Fraction 4 Day 2 1400– Day 3 0800	Fraction 5 Day 3 0800–1400	Fraction 6 Day 3 1400– Day 4 0800	Fraction 7 Day 4 0800–1400	Fraction 8 Day 4 1400– Day 5 0800
(µmol/	L)								
NO ₃ ⁻	GrO	$35 \pm 8^{\mathrm{B}}$	$26 \pm 4^{\mathrm{B}}$	$36 \pm 8^{\mathrm{B}}$	$23 \pm 4^{\mathrm{B}}$	$32 \pm 3^{\mathrm{B}}$	$24 \pm 2^{\text{B}}$	20 ± 2^{B}	15 ± 4
	GrNO ₃	84 ± 12^{A}	78 ± 12^{A}	129 ± 11^{A}	74 ± 11^{A}	119 ± 18^{A}	91 ± 21^{A}	$80 \pm 14^{\text{A}}$	31 ± 12*
	GrNO ₂	$111 \pm 20^{\text{A}}$	74 ± 7^{A}	$108 \pm 14^{\text{A}}$	85 ± 7^{A}	$125 \pm 21^{\text{A}}$	79 ± 9^{A}	$99 \pm 16^{\text{A}}$	$21 \pm 4*$
	GrNO ₂ NO ₃	93 ± 14^{A}	81 ± 13^{A}	144 ± 19^{A}	74 ± 12^{A}	144 ± 21^{A}	70 ± 9^{A}	86 ± 14^{A}	$27 \pm 12^{*}$
NO_2^-	GrO	0.3 ± 0.1	0.2 ± 0.0	0.3 ± 0.1	$0.3 \pm 0.1^{\circ}$	0.3 ± 0.1	$0.3 \pm 0.0^{\circ}$	$0.3 \pm 0.1^{\mathrm{B}}$	0.3 ± 0.1^{B}
	GrNO ₃	1.4 ± 0.7	2.7 ± 1.7	2.8 ± 1.2	$5.8 \pm 2.4^{\mathrm{B}}$	4.5 ± 2.1	$4.1 \pm 2.4^{\rm BC}$	$2.7 \pm 1.8^{\rm AB}$	$2.5 \pm 1.2^{\mathrm{AB}}$
	GrNO ₂	1.2 ± 0.5	2.0 ± 1.4	0.9 ± 0.3	$3.8 \pm 1.8^{\mathrm{BC}}$	1.3 ± 0.5	$6.5 \pm 3.6^{\mathrm{B}}$	$1.6\pm0.9^{\rm AB}$	6.1 ± 2.7^{A}
	$GrNO_2NO_3$	0.3 ± 0.1	2.2 ± 1.2	1.4 ± 0.4	$10.9\pm4.7^{\rm A}$	3.4 ± 1.1	$18.0\pm5.3^{\rm A}$	$6.0\pm2.4^{\rm A}$	$6.1\pm3.3^{\rm A}$

^{ABC} Values are means \pm SEM, n = 6 calves per group. Means with different capital superscript letters (A, B, C) are significantly different (P < 0.05) between groups. * means are significantly different (P < 0.05) from fractions 1 to 7.

(within 2 h) and on d 2 and d 3 (after 6 h) when NO₃⁻, NO₂⁻ or NO₂⁻ plus NO₃⁻ were administered. The increments of NO₃⁻ at 6 h after NO₃⁻, NO₂⁻ or NO₂⁻ plus NO₃⁻ intakes in the 3 groups were similar. However, in all three NO₃⁻ and/or NO₂⁻ supplemented groups NO₃⁻ concentrations after 6 h on d 2 and 3 were higher (P < 0.001) than on d 1 and on d 3 were higher (P < 0.001) than on d 2. The NO₃⁻ concentrations decreased with a t_{1/2} of 22.5 h after the last NO₂⁻, NO₃⁻ or NO₂⁻ plus NO₃⁻ administration. Preprandial concentrations on d 4 and on d 5 (not shown) were still higher (P < 0.001) than preprandial concentrations on d 1, but reached basal concentrations on d 7, i.e., 4 d after the last NO₃⁻ and/or NO₂⁻ administration.

The NO₂⁻ concentrations slightly increased (P < 0.05) in GrNO₂ on d 1 (at 2, 4 and 6 h after NO₂⁻ feeding) and on d 3 (at 6 h after NO₂⁻ feeding), whereas NO₂⁻ concentrations did not significantly change in the other groups. Concentrations in GrNO₂ on d 1 were higher (P < 0.05) than in GrO at 2 and 6 h than in GrNO₃ at 2 and 4 h, and than in GrNO₂NO₃ at 4 h.

Urinary excretion of NO₂⁻ and NO₃⁻, excretion in calves administered 200 μ mol NO₂⁻, NO₃⁻, or NO₂⁻ plus NO₃^{-/} kg^{0.75} (Table 2). The excreted amounts of NO₃⁻ in fractions 1 to 7 in GrNO₃, GrNO₂NO₃ and GrNO₂ were greater (P < 0.01) than in GrO, and then decreased (P < 0.01) in fraction 8 to values in GrO. Within GrO there were no significant differences between fractions. In GrNO₃ and GrNO₂NO₃ the excretions of NO₃⁻ in fractions 3 and 5 were greater (P < 0.01) than in fraction 1, whereas in fraction 8 of GrNO₃, GrNO₂ and GrNO₂NO₃ were lower (P < 0.05) than in fraction 1. There were no significant differences of NO₃⁻ excretion between GrNO₃, GrNO₂NO₃, and GrNO₂.

The NO₂⁻ excretion was very small in all groups and more than 10 times lower than NO₃⁻ excretions. The NO₂⁻ excretion was slightly, but significantly (P < 0.05) greater than in GrO in GrNO₃ in fraction 4, in GrNO₂ in fractions 6 and 8, and in GrNO₂NO₃ in fractions 4, 6, 7 and 8.

3.2. Experiment 2

Plasma NO₂⁻ and NO₃⁻ concentrations in calves administered 400 μ mol NO₂⁻ or NO₃⁻/kg^{0.75} (Fig. 1). The NO₃⁻ concentrations increased (P < 0.001) after the administra-

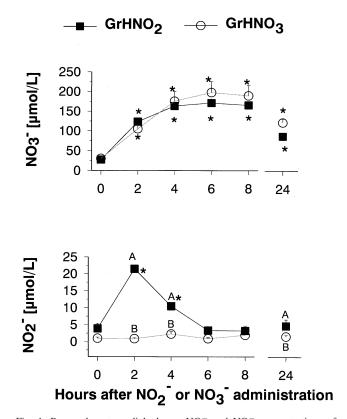


Fig. 1. Pre- and postprandial plasma NO_3^- and NO_2^- concentrations of calves fed 400 μ mol $NO_2^-/kg^{0.75}$ (GrHNO₂), and 400 μ mol $NO_3^-/kg^{0.75}$ (GrHNO₃) at the morning meal with whole milk. Values are means \pm SEM, n = 6 per group. *, Means are significantly different (P < 0.05) from values at time 0. Means with different capital superscript letters (A, B) are significantly different (P < 0.05) between groups.

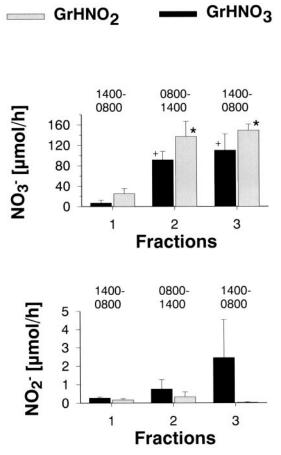


Fig. 2. Urinary excretion of NO₃⁻ and NO₂⁻ of calves fed fed 400 μ mol NO₂⁻/kg^{0.75} (GrHNO₂) or 400 μ mol NO₃⁻/kg^{0.75} (GrHNO₃). Values are means \pm SEM, n = 6 per group. The NO₂⁻ or NO₃⁻ were administered on d 1 at the morning meal with milk. Urine was collected in 3 fractions; fraction 1: from d 0 (d before supplementation) 1400 to d 1 at 0800; fraction 2: d 1 from 0800 to 1400; fraction 3: from d 1 at 1400 to d 2 at 0800. *, means are significantly different (P < 0.05) from values of fraction 1 within GrHNO₂. +, means are significantly different (P < 0.05) from values of fraction 1 within GrHNO₃.

tion of NO₂⁻ or NO₃⁻ in both groups. At 24 h after the NO₂⁻ or NO₃⁻ administrations concentrations of NO₃⁻ were decreased, but values of both groups were still higher (P < 0.05) than at time 0. There were no significant group differences.

Concentrations of NO_2^- increased (P < 0.01) and reached a peak at 2 h after the administration of NO_2^- , but at 6 h after feeding returned to basal concentrations. After the NO₃⁻ administration plasma NO₂⁻ concentrations did not increase. Concentrations at 2, 4, and 24 h were higher (P < 0.05) in GrHNO₂ than in GrHNO₃.

Urinary excretion of NO₂⁻ and NO₃⁻, in calves administered 400 μ mol NO₂⁻ or NO₃⁻/kg^{0.75} (Fig. 2). The excretion of NO₃⁻ increased (P < 0.05) after NO₃⁻ or NO₂⁻ intakes and was greater (P < 0.01) in fractions 2 and 3 than in fraction 1. Values in fractions 2 and 3 were similar and there were no significant group differences. Urinary NO₂⁻ excretion did not change significantly in both groups.

3.3. Experiment 3

Stability of NO_2^- and NO_3^- in vitro (Table 3). The concentration of NO_3^- remained stable after addition of NO_2^- to full blood, whereas the NO_2^- concentration decreased within 2 h and at 6 h addition reached nearly basal values.

4. Discussion

Basal plasma NO_3^- and NO_2^- concentrations in the 8 wk old veal calves were in the range of 40 ± 6 and 4 ± 1 μ mol/L, respectively. These values were much higher than in heifers and dairy cows, in which NO_3^- and NO_2^- are barely measurable or even absent from plasma, but were lower than in premature and neonatal calves [8,16; Blum, unpublished observations]. Calves in this study were strictly fed whole milk obtained from cows without mastitis which did not contain measurable amounts of NO_3^- or NO_2^- , in accordance with other studies [10; Blum, unpublished observations]. This also supports previous findings [16] that NO_3^- present in plasma in young calves is primarily endogenously produced.

Amounts of supplemented NO_2^- or NO_3^- were much below the toxic level [1] and there was in fact no evidence of any clinical sign of intoxication. Plasma concentrations of NO_3^- increased rapidly and dose-dependently after the oral intake of only 200 or 400 µmol NO_2^- or $NO_3^-/kg^{0.75}$. Maximal plasma values reached were at the low range of values measured in newborn calves [16]. Because the plasma NO_2^- concentrations were very low, NO_3^- was the main component in plasma.

The NO₃⁻ clearance rates of NO₃⁻ with a $t_{1/2}$ of about 22 h were relatively low. Thus, 24 h after the last intake of

Table 3

Blood plasma concentrations of NO₃ and NO₂ before and after addition of 50 μ mol NO₂/L full blood

Trait	Before NO_2^- addition	Immediately after NO_2^- addition	$2 h after NO_2^-$ addition	4 h after NO_2^- addition	6 h after NO ₂ ⁻ addition	24 h after NO_2^- addition
NO_3^- (µmol/L)	55	105	99	104	105	100
NO_2^- (µmol/L)	0	40	10	9	3	9

Values are derived from one experiment and means of duplicate determinations.

200 μ mol NO₂⁻ or NO₃⁻ per kg^{0.75} the plasma NO₃⁻ concentrations were still higher than on d 1. Ingested NO₂⁻ or NO₃⁻ therefore remain for relatively long in the circulation and can therefore exert possibly harmful effects for a prolonged time, if present in too high amounts.

While there was no evidence for NO_3^- conversion to NO_2^- , NO_2^- was obviously very rapidly converted to NO_3^- in vivo because in calves fed NO_3^- , NO_2^- or NO_2^- plus NO_3^- , the behaviour of plasma NO_3^- concentrations was nearly identical. After oral NO_2^- administration only a transient and small increase of plasma NO_2^- concentrations could be measured, which was slightly greater when 400 than 200 μ mol $NO_2^-/kg^{0.75}$ were administered. This is in accordance with Granger et al. [20], who stated that intestinally absorbed NO_2^- is oxidized to NO_3^- almost completely during the first passage through the liver. Our additional experiment with full blood to which NO_2^- was added suggested that the oxidation of NO_2^- to NO_3^- occurs rapidly in vitro, too, whereas NO_3^- remains quite stable.

Both NO_2^- and NO_3^- in young calves are excreted by salivary glands and kidneys [16]. This study shows that ingested NO_2^- and NO_3^- were at least in part excreted through urine in the form of NO_3^- and that urinary $NO_3^$ excretion mirrored ingested NO_2^- and NO_3^- . On the other hand, urinary NO_2^- excretion was not enhanced even when plasma NO_2^- concentrations increased, likely because the transient rise in blood plasma was too small and because NO_2^- is converted to NO_3^- .

In conclusion, this study confirms previous data that 8 wk old milk-fed calves, which ingest no or but trace amounts of NO_3^- or NO_2^- with milk, have relatively high preprandial plasma NO_3^- and very low plasma NO_2^- concentrations. However, it can be demonstrated that plasma NO_3^- concentrations and urinary excretions rapidly increase depending on the administered dose by oral administration of very small amounts of NO_3^- and NO_2^- with milk. An NO_3^- to NO_2^- conversion barely occurs. However, the data also show that ingested NO_2^- is rapidly converted to NO_3^- . Only NO_3^- was excreted by urine in significant amounts. Thus, small amounts of exogenous NO_3^- or NO_2^- can significantly add to endogenously produced NO_3^- in milk-fed calves.

References

 H.-J. Hapke, Toxikologie f
ür Veterin
ärmediziner. 2nd edn., Verlag F. Enke, Stuttgart, Germany, 1988.

- [2] L.C. Green, S.R. Tannenbaum, Nitrate synthesis in the germfree and conventional rat. Science 212 (1981a) 56–58.
- [3] L.C. Green, K.R. De Luzuriaga, D.A. Wagner, W. Rand, N. Istfan, V.R. Young, S.R. Tannenbaum. Nitrate biosynthesis in man. Proc Natl Acad Sci USA 78 (1981b) 7764–7768.
- [4] S. Moncada, R.M.J. Palmer, E.A. Higgs. Nitric oxide: Physiology, Pathophysology, and Pharmacology. Pharm Rev 43 (1991) 109–142.
- [5] E. Anggard. Nitric oxide: mediator, murderer, and medicine. The Lancet 343 (1992) 1199–1206.
- [6] J.R. Lancaster. Nitric oxide in cells. American Scientist 80 (1992) 248–259.
- [7] D.A. Geller, P.D. Freeswick, D., Nguyen, A.K. Nussler, M. Di Silvio, R.A. Shapiro, S.C. Wang, R.L. Simmons, T.R. Billiar. Differential induction of nitric oxide synthase in hepatocytes during endotoxemia and the acute-phase response. Arch Surg 129 (1994) 165–171.
- [8] S. Kahl, T.H. Elsasser, J.W. Blum. Nutritional regulation of plasma tumor necrosis factor-α and plasma and urinary nitrite/nitrate response to endotoxin in cattle. Proc Soc Exp Biol Med 215 (1997) 370–376.
- [9] V. Rajaraman, B.J. Nonnecke, S.T. Franklin, D.C. Hammell, R.L. Horst. Effect of vitamins A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. J Dairy Sci 81 (1998) 3278–3285.
- [10] J.W. Blum, H. Dosogne, D. Hoeben, F. Vangroenweghe, H.M. Hammon, R.M. Bruckmaier, C. Burvenich. Tumor necrosis factor-α and nitrite/nitrate responses during acute mastitis induced by *Escherichia coli* infection and endotoxin in dairy cows. Domest Anim Endocrinol 19 (2000) 223–235.
- [11] T.W. Jungi. Nitric oxide synthesis by macrophages: a lesson learned from ruminants. Current Trends Immunol 1 (1998) 1–10.
- [12] T.H. Elsasser, S. Kahl, T.S. Rumsey, J.W. Blum. Modulation of growth performance in disease: reactive nitrogen compounds and their impact on cell proteins. Domest Anim Endocrinol 19 (2000) 75–84.
- [13] D.J. Meyer. Enzymatic/nonenzymatic formation of nitric oxide. Nature Medicine 1 (1995) 1103–1120.
- [14] J.L. Zweier, P.H. Wang, A. Samouilov, P. Kuppusamy. Enzymeindependent formation of nitric oxide in biological tissues. Nature Medicine 1 (19950 804–809.
- [15] E. Weitzberg, J.O.N. Lundberg. Nonenzymatic nitric oxide production in humans. Nitric Oxide 2 (1998) 1–7.
- [16] J.W. Blum, B.R. Hüsler, C. Morel, H. Hammon, R.M. Bruckmaier. Blood plasma concentrations and salivary and urinary excretion of nitrite/nitrate in calves: dependency on age and nutritional effects. Proc Joint Meeting American Dairy Science Association and American Society of Animal Science, Denver, CO, USA, July 1998, Abstr. 509, p. 132.
- [17] R. Hambitzer, H. Velke, K. Ramm, H. Sommer. Bewertung der Nitratbelastung von laktierenden und trockenstehenden Milchkühen anhand der Nitratwerte im Blutplasma. Tierärztl Umschau 42 (1987) 775–780.
- [18] SAS Institute Inc. Introductory comparison of the GLM and mixed procedures. SAS Inst Inc, Cary, NC, 1994.
- [19] J. Wartak. Clinical pharmacokinetics. Praeger Publishers, New York, 1983.
- [20] D.L. Granger, J.B. Hibbs, L.M. Broadnax. Urinary nitrate excretion in relation to murine macrophage activation. J Immunol 146 (1991) 1294–1302.